Current Transducer LA 205-S/SP29

For the electronic measurement of currents : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

C E

EI	ectrical data						
I _{PN}	Primary nominal r.m.s.	300				A	
I _P	Primary current, measuring range		0 ± 500				Α
Î _{P max}	Measuring overload ¹⁾		600			Α	
R _M	Measuring resistance @		T _A =	70°C	T _A :	= 85°0	2
			$R_{Mmin}R_{Mmax}R_{Mmin}R_{Mm}$			R _{M max}	¢
	with ± 12 V	$@ \pm 300 A_{max}$	0	33	0	31	Ω
		@ ± 500 A _{max}	0	6	0	4	Ω
	with ± 15 V	@ ± 300 A _{max}	5	52	5	50	Ω
		@ ± 500 A _{max}	5	17	5	15	Ω
I _{sn}	Secondary nominal r.m.s. current		150				mA
ĸ	Conversion ratio		1:2000				
V _c	Supply voltage (± 5 %) ± 12 15			5	V		
I _c	Current consumption	20(@±15V)+ I _s mA					
Ň	R.m.s. rated voltage ²⁾ , safe separation		1625				V
2		basic isolation		325	50		V

Х _G	Accuracy - Dynamic performance data Overall accuracy @ I_{PN} , $T_{A} = 25^{\circ}C$				%
e _	Linearity			±0.8 <0.1	
			Тур	Max	
0	Offset current @ $I_p = 0$, $T_A = 25^{\circ}C$			±0.15	mA
ОМ	Residual current ³ @ $I_p = 0$, after an overload of 3 x I_{PN}			±0.50	mA
от	Thermal drift of I _o - 10°	°C + 85°C	±0.15	±0.30	mA
ra	Reaction time @ 10 % of I _{PN}		< 500		ns
r	Response time ⁴⁾ @ 90 % of I _{PN}		< 1	μs	
di/dt	di/dt accurately followed		> 100		A/µs
	Frequency bandwidth (- 3 dB)		DC 100		kHz
G	eneral data				
۲	Ambient operating temperature		- 10 + 85		°C
Γ _s	Ambient storage temperature		- 40	+ 90	°C
R _s	Secondary coil resistance @	$\mathbf{T}_{A} = 70^{\circ}\mathrm{C}$	35		Ω
		T _A = 85°C	37		Ω
m	Mass		110		g
	Standards ⁵⁾			EN 50178	


<u>Notes</u>: ¹⁾ 3 mn/hour @ $\mathbf{V}_{c} = \pm 15 \text{ V}, \mathbf{R}_{M} = 5 \Omega$

- ²⁾ Pollution class Ž. With a non insulated primary bar which fills the through-hole
- ³⁾ The result of the coercive field of the magnetic circuit
- $^{\scriptscriptstyle 4)}$ With a di/dt of 100 A/µs

⁵⁾ A list of corresponding tests is available.

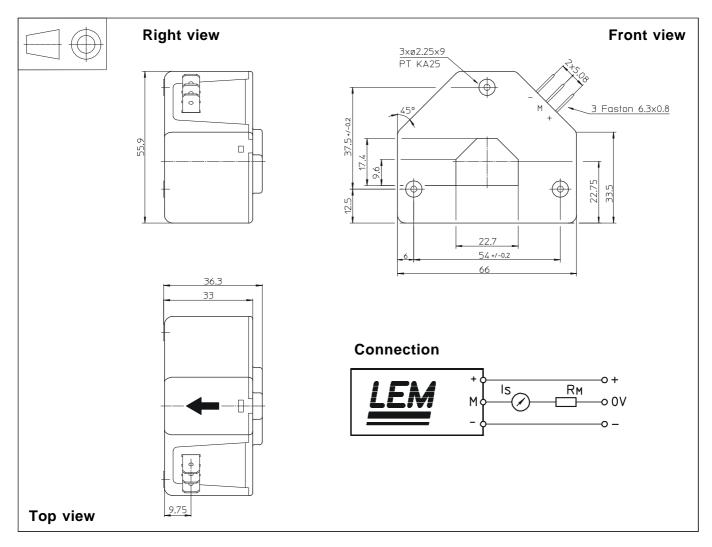
LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

- I_{PN} = 300 A
- $I_{\rm P} = 0 .. \pm 500 \, \text{A}$
- Negative output polarity
- Connection to secondary circuit on Faston 6.3 x 0.8 mm.


Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Dimensions LA 205-S/SP29 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening
 - Fastening torque max
- Primary through-hole
- Connection of secondary

 \pm 0.5 mm 3 holes \oslash 2.25 mm 3 PT KA 25 screews 0.8 Nm 22.7 x 17.4 mm Faston 6.3 x 0.8 mm

Remarks

- I_s is negative when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.