

# **Current Transducer LA 205-T/SP14**

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

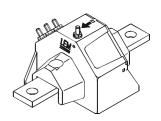






|   |   | _  | _ |  |
|---|---|----|---|--|
| Λ | 7 | 'n | 7 |  |

| EI                              | ectrical data                                       |                          |                            |                              |    |
|---------------------------------|-----------------------------------------------------|--------------------------|----------------------------|------------------------------|----|
| I <sub>PN</sub>                 | Primary nominal r.m.s. current                      |                          | 200                        |                              | Α  |
| I <sub>P</sub>                  | Primary current, measuring range                    |                          | 0 ± 600                    | )                            | Α  |
| $\dot{\mathbf{R}}_{\mathrm{M}}$ | Measuring resistance @ $\mathbf{T}_{_{\mathrm{A}}}$ | = 80°C                   | $R_{_{ m Mmin}}$           | $\mathbf{R}_{\mathrm{Mmax}}$ |    |
|                                 | with ± 15 V                                         | 2 ± 200 A <sub>max</sub> | 5                          | 88                           | Ω  |
|                                 |                                                     | 2 ± 250 A max            | 5                          | 65                           | Ω  |
|                                 | (0)                                                 | 2 ± 600 A max            | 5                          | 6                            | Ω  |
| I <sub>SN</sub>                 | Secondary nominal r.m.s. o                          | current                  | 100                        |                              | mΑ |
| K <sub>N</sub>                  | Conversion ratio                                    |                          | 1:2000                     |                              |    |
| <b>v</b> <sub>c</sub>           | Supply voltage (±10 %)                              |                          | ± 15                       |                              | V  |
| I <sub>c</sub>                  | Current consumption                                 |                          | 20 + <b>I</b> <sub>s</sub> |                              | mΑ |
| $\mathbf{V}_{d}$                | R.m.s. voltage for AC isolation                     | on test, 50 Hz, 1 mn     | 5 <sup>1)</sup>            |                              | kV |
| u                               | •                                                   |                          | 1 <sup>2)</sup>            |                              | kV |


| Ac              | curacy - Dynamic performance data                                  |        |        |      |  |  |
|-----------------|--------------------------------------------------------------------|--------|--------|------|--|--|
| X <sub>G</sub>  | Overall accuracy @ I <sub>PN</sub> , T <sub>A</sub> = 25°C         | ± 0.8  |        | %    |  |  |
| <b>e</b> _      | Linearity                                                          | < 0.1  |        | %    |  |  |
|                 |                                                                    | Тур    | Max    |      |  |  |
| $I_{\circ}$     | Offset current @ $I_P = 0$ , $T_A = 25$ °C                         |        | ± 0.15 | mΑ   |  |  |
| I <sub>OM</sub> | Residual current 3 @ $I_p = 0$ , after an overload of 3 x $I_{pN}$ |        | ± 0.50 | mΑ   |  |  |
| I <sub>OT</sub> | Thermal drift of $I_0$ - 25°C + 80°C                               | ± 0.15 | ± 0.40 | mΑ   |  |  |
| t <sub>ra</sub> | Reaction time @ 10 % of I <sub>P max</sub>                         | < 500  |        | ns   |  |  |
| t,              | Response time $^{4)}$ @ 90 % of $I_{P max}$                        | < 1    |        | μs   |  |  |
| di/dt           | di/dt accurately followed                                          | > 100  |        | A/µs |  |  |
| f               | Frequency bandwidth (- 3 dB)                                       | DC ′   | 100    | kHz  |  |  |
|                 | Conoral data                                                       |        |        |      |  |  |

| G              | eneral data                                       |           |    |
|----------------|---------------------------------------------------|-----------|----|
| $T_{_{\rm A}}$ | Ambient operating temperature                     | - 25 + 80 | °C |
| T <sub>s</sub> | Ambient storage temperature                       | - 40 + 85 | °C |
| R <sub>s</sub> | Secondary coil resistance @ T <sub>A</sub> = 80°C | 36        | Ω  |
| m              | Mass                                              | 270       | g  |
|                | Standards                                         | EN 50155  |    |
|                |                                                   |           |    |

Notes: 1) Between primary and secondary + shield

- 2) Between secondary and shield
- 3) The result of the coercive field of the magnetic circuit
- 4) With a di/dt of 100 A/µs.

# 200 A



#### **Features**

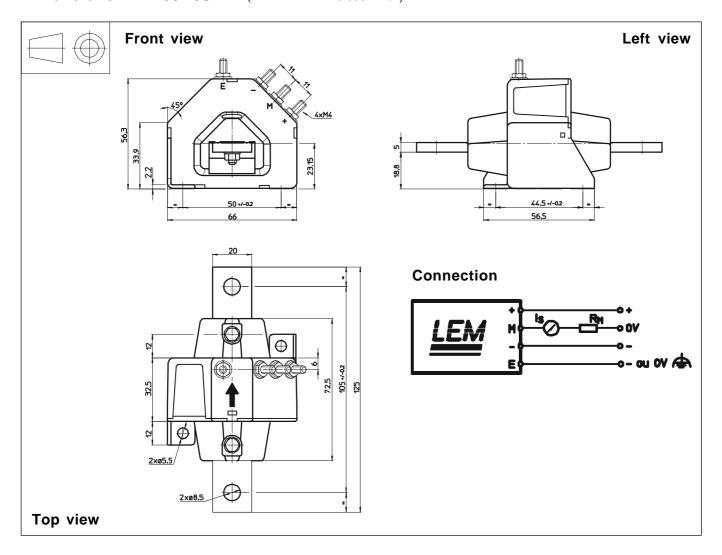
- Closed loop (compensated) current transducer using the Hall effect
- Isolated plastic case recognized according to UL 94-V0.

### Special features

- $I_D = 0.. \pm 600 \text{ A}$
- $V_{c} = \pm 15 (\pm 10 \%) V$
- $V_d = 5 \, k \, V^{-1}$
- $T_{\Lambda} = -25^{\circ}C ... + 80^{\circ}C$
- Shield between primary and secondary
- Connection to secondary circuit on M4 threaded studs
- Potted
- VRT Burn-in
- Railway equipment.

#### **Advantages**

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- · High immunity to external interference
- Current overload capability.


#### **Applications**

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

070301/5



# **Dimensions LA 205-T/SP14** (in mm. 1 mm = 0.0394 inch)



#### **Mechanical characteristics**

• General tolerance ± 0.5 mm

• Transducer Fastening 2 holes Ø 5.5 mm 2 M5 steel screws

4 Nm or 2.95 Lb. - Ft.

Fastening torque max. Or

2 holes Ø 8.5 mm By the primary bar

· Connection of secondary M4 threaded studs

Fastening torque 1.2 Nm or .88 Lb.-Ft.

### **Remarks**

- ullet I<sub>s</sub> is positive when I<sub>p</sub> flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.