

Current Transducer LC 1000-S

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

$I_{PN} = 1000 A$

Electrical data

I _{PN} I _P R _M	Primary nominal r.m.s. current Primary current, measuring range Measuring resistance		1000 0 \pm 1500 $\mathbf{R}_{M \text{min}}$ $\mathbf{R}_{M \text{max}}$		A A
	with ± 15 V	@ ± 1000 A _{max} @ ± 1500 A _{max}	0 0	25 5	Ω
I _{SN} K _N V _C I _C V _d	Secondary nominal r.n. Conversion ratio Supply voltage (± 5 % Current consumption R.m.s. voltage for AC i		200 1 : 5000 ± 15 25 + I _s 3	0	mA V mA kV

Accuracy - Dynamic performance data

X _G e _L	Overall accuracy @ \mathbf{I}_{PN} , \mathbf{T}_{A} = 25°C Linearity		± 0.2 < 0.1		% %
I _о I _{от}	Offset current @ $\mathbf{I}_{\rm p} = 0$, $\mathbf{T}_{\rm A} = 25^{\circ}{\rm C}$ Thermal drift of $\mathbf{I}_{\rm O}$	0°C + 70°C	Typ ± 0.2	Max ± 0.4 ± 0.3	mA mA
t _, di/dt f	Response time $^{1)}$ @ 90 % of $I_{\rm P\ max}$ di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 50 DC 1	100	μs A/μs kHz

General data

$T_{_{A}}$	Ambient operating temperature	0 + 70	°C
T_s	Ambient storage temperature	- 25 + 85	°C
\mathbf{R}_{s}	Secondary coil resistance @ T _A = 70°C	40	Ω
m	Mass	620	g
	Standards ²⁾	EN 50178	

Features

- Closed loop (compensated) current transducer using the Hall effect
- Open construction on 130 x 100 mm PC board
- Patent pending.

Advantages

- Excellent accuracy
- · Very good linearity
- Low temperature drift
- Short response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capacity.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Notes: 1) With a di/dt of 100 A/µs

980716/5

¹⁾ A list of corresponding tests is available

Dimensions LC 1000-S (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Primary through-hole
- Connection of secondary
- \pm 0.5 mm
- 4 holes \varnothing 4.3 mm
- Ø 40 mm
- Faston 2.8 x 0.8 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.