Current Transducer LC 1000-S For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit). # $I_{PN} = 1000 A$ #### **Electrical data** | I _{PN}
I _P
R _M | Primary nominal r.m.s. current Primary current, measuring range Measuring resistance | | 1000
0 \pm 1500
$\mathbf{R}_{M \text{min}}$ $\mathbf{R}_{M \text{max}}$ | | A
A | |---|---|--|---|---------|---------------------| | | with ± 15 V | @ ± 1000 A _{max}
@ ± 1500 A _{max} | 0
0 | 25
5 | Ω | | I _{SN} K _N V _C I _C V _d | Secondary nominal r.n. Conversion ratio Supply voltage (± 5 % Current consumption R.m.s. voltage for AC i | | 200
1 : 5000
± 15
25 + I _s
3 | 0 | mA
V
mA
kV | # Accuracy - Dynamic performance data | X _G e _L | Overall accuracy @ \mathbf{I}_{PN} , \mathbf{T}_{A} = 25°C Linearity | | ± 0.2
< 0.1 | | %
% | |---|---|------------|---------------------|-----------------------|-------------------| | I _о
I _{от} | Offset current @ $\mathbf{I}_{\rm p} = 0$, $\mathbf{T}_{\rm A} = 25^{\circ}{\rm C}$
Thermal drift of $\mathbf{I}_{\rm O}$ | 0°C + 70°C | Typ
± 0.2 | Max
± 0.4
± 0.3 | mA
mA | | t _,
di/dt
f | Response time $^{1)}$ @ 90 % of $I_{\rm P\ max}$ di/dt accurately followed Frequency bandwidth (- 1 dB) | | < 1
> 50
DC 1 | 100 | μs
A/μs
kHz | #### General data | $T_{_{A}}$ | Ambient operating temperature | 0 + 70 | °C | |---------------------------|--|-----------|----| | T_s | Ambient storage temperature | - 25 + 85 | °C | | \mathbf{R}_{s} | Secondary coil resistance @ T _A = 70°C | 40 | Ω | | m | Mass | 620 | g | | | Standards ²⁾ | EN 50178 | | | | | | | #### **Features** - Closed loop (compensated) current transducer using the Hall effect - Open construction on 130 x 100 mm PC board - Patent pending. # **Advantages** - Excellent accuracy - · Very good linearity - Low temperature drift - Short response time - Wide frequency bandwidth - No insertion losses - High immunity to external interference - Current overload capacity. #### **Applications** - AC variable speed drives and servo motor drives - Static converters for DC motor drives - Battery supplied applications - Uninterruptible Power Supplies (UPS) - Switched Mode Power Supplies (SMPS) - Power supplies for welding applications. Notes: 1) With a di/dt of 100 A/µs 980716/5 ¹⁾ A list of corresponding tests is available # **Dimensions LC 1000-S** (in mm. 1 mm = 0.0394 inch) # **Mechanical characteristics** - General tolerance - Fastening - Primary through-hole - Connection of secondary - \pm 0.5 mm - 4 holes \varnothing 4.3 mm - Ø 40 mm - Faston 2.8 x 0.8 mm #### **Remarks** - I_s is positive when I_p flows in the direction of the arrow. - Temperature of the primary conductor should not exceed 100°C - Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole. - This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.