

Current Transducer HX 03..50-P/SP14

For the electronic measurement of currents: DC, AC, pulsed, mixed with galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

All data are given with $\mathbf{R}_{_{\mathrm{I}}}$ = 10 k Ω

$I_{PN} = \pm 03..50 A$

Electrical data

ent rms	Primary current measuring range I_{PM} (A)	Primary conductor diameter x turns (mm)	Туре	
3	± 9	0.6d x 20T	HX 03-P/S	P14
25	± 75	1.6d x 2T	HX 25-P/S	P14
50	± 150	1.2 x6.3x1T	HX 50-P/S	P14
\mathbf{V}_{OUT} Output voltage (Analog) @ $\pm \mathbf{I}_{PN}$, \mathbf{R}_{L} =10k Ω , \mathbf{T}_{A} =25°C			± 4	V
R _{OUT} Output internal resitance		< 50	Ω	
R _L Load resitance		≥ 10	$k\Omega$	
Supply voltage (± 5 %) 1)		± 15	V	
Current consumption		< ± 15	mA	
	25 50 Output volta Output inter Load resitar Supply volt	measuring range $\frac{N}{N}$ (A) $\frac{I_{PM}}{N}$ (A) $\frac{I_{PM}}{N}$ (A) $\frac{I_{PM}}{N}$ (B) $\frac{I_{PM}}{N}$ (A) $\frac{I_{PM}}{N}$ (B)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	${\bf I}_{\rm PM}$ (A)

Accuracy - Dynamic performance data

X	Accuracy @ I_{PN} , R_L =10k Ω , T_A = 25°C		< ± 1 %	of I _{PN}
$\mathcal{E}_{\scriptscriptstyle L}$	Linearity error 1) (0 ± I _{PN})		< ± 1 %	of I _{PN}
V _{OE}	Electrical offset voltage @ T _A = 25°C		$< \pm 40$	mV
V _{OH}	Magnetic offset voltage @ I _P = 0			
	after an excursion of 3 x I _{PN}		< ± 15	mV
TCV _{OF}	Temperature coefficient of V _{OF}	max.	± 1.5	mV/K
TCV	Temperature coefficient of V _{OUT} (% of reading)		< 0.1	%/K
t,	Response time to 90 % of I _{PN} step		< 3	μs
BW	Frequency bandwidth (- 3 dB) ²⁾		DC 50	0 kHz

General data

T_A	Ambient operating temperature	- 40 +8	35 °C
T _s	Ambient storage temperature	- 40 +8	35 °C
m	Mass	< 8	g
	Standards	EN 50178:	1997

Note: 1) Also operate at $\pm 12V$ power supplies, measuring range reduced to $\pm 2.5 \times I_{PN}$

Features

- Hall effect measureing principle
- Galvanic isolation between primary and secondary circuit
- Isolation voltage 3000V
- Low power consumption
- Extended measureing range (3 x I_{PN})
- Insulated plastic case recognized according to UL 94-V0.

Special features

 Operating/Storage temperature range - 40 .. +85 °C

Advantages

- Low insertion losses
- Easy to mount with automatic handling system
- Small size and space saving
- High immunity to external interference

Applications

- Switched Mode Power Supplies (SMPS)
- AC variable speed drives
- Uninterruptible Power Supplies (UPS)
- · Battery supplied applications
- DC motor drives

Application domain

Industrial

²⁾ Small signal only to avoid excessive heating of the magnetic cores.

Current Transducer HX 03..50-P/SP14

Is	Isolation characteristics			
\mathbf{V}_{d}	Rms voltage for AC isolation test, 50Hz, 1min	> 3	kV	
	Partial discharge extinction voltage rms@10pC	≥ 1	kV	
$\mathbf{\hat{V}}_{\mathrm{e}}$ $\hat{\mathbf{\hat{V}}}_{\mathrm{w}}$	Impulse withstand voltage 1.2/50 µs	≥ 6	kV	
		Min		
dCp	Creepage distance	> 5.5	mm	
dCI	Clearance distance	> 5.5	mm	
CTI	Comparative Tracking Index	≥ 600		

Applications examples

According to EN 50178 and IEC 61010-1 standards and following conditions:

- Over voltage category III
- Pollution degree 2
- Non-uniform field

	EN 50178	IEC 61010-1
dCp, dCl, \hat{V}_w	Rated insulation voltage	Nominal voltage
Basic insulation	600 V	600 V
Reinforced insulation	300 V	150 V

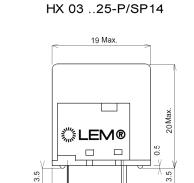
Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

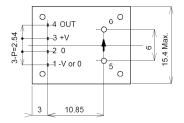
Caution, risk of electrical shock

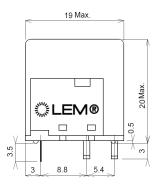
When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

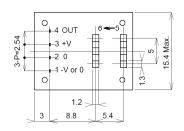
Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.


Main supply must be able to be disconnected.


Dimensions HX 03..50-P/SP14 (in mm.)



10.85

HX 50-P/SP14

Top view

HX 50-P/SP14

c 71 "g"

(€ 410123

Lot No.

Terminal Pin Identification

- 1.....-15 V
- 2.....0 V
- 3.....+15 V
- 4.....Output
- 5.....Primary input Current (+)
- 6.....Primary input Current (-)

Primary conductor diameter

HX	03-P/SP14	25-P/SP14
d	0.6	1.6
НХ	50-P/SP14	
d	1.2 x 6.3	

Secondary pins dimension 0.5x0.25

Mechanical characteristics

• General tolerance ± 0.5 mm

Remarks

 \bullet $\mathbf{V}_{\mathrm{OUT}}$ is positive when \mathbf{I}_{P} flows in the direction of the arrow.