StarPower Semiconductor Ltd. StarPower Europe AG

Company Introduction

- Established: on April 27, 2005
- Campus: 70,700 m2
- Total employees: 500
- Revenue in 2017: US\$ 95 million (2016: US\$ 80 million)
- Locations China: Jiaxing (FAB1, 2 and 3), Shanghai (FAB4)
- Locations Europe: Nürnberg/ Germany (R&D), Cadenazzo/ Switzerland (Sales HQ)
- Certificates: <u>ISO9001</u>, <u>ISO14001</u>, <u>TS16949</u>

12/02/18

IGBT module production

Fab 1

- Clean Room Area: 1200m²
- Standard Module Production (600V / 1200V / 1700V)
- Capacity / Month: 150k pcs.

Fab 2

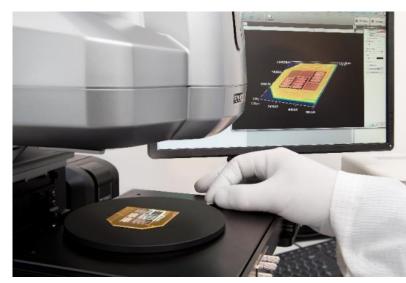
- Clean Room Area: 2000m²
- L- and F- Types (6-pack, 7-pack, CIB)
- Capacity / Month: 100k pcs. (Econo) 100k pcs. (Easy/ Flow)

Fab 3

- Clean Room Area: 1500m²
- Planned for IPM Modules (600V / 1200V) for white goods and other applications

Production

Automotive Module Production



- Introduced by Shanghai government
- Located in Shanghai New Energy Vehicle Science Park
- Will focus on IGBT modules for EV application
- Ready for production in Q2, 2018
- Phase I Capacity about 50k of automotive modules per month

R&D Centre Nürnberg/ Germany

Development of new Technologies

(i.e. Sintering, New Die bonding, etc)

Key Personnel

Dr. Hua Shen	Peter Frey	Christian Kroneder	Dr. Yi Tang	Dr. Subhas Bose Veeramma
CEO	Managing Director	Director R&D Center	VP Silicon Technology	Director & CTO Chips
StarPower 11 years	StarPower Europe 23 years	StarPower Europe	StarPower 12 years	StarPower Europe
Production experience at Siemens / Infineon in USA and Xilinx Inc. USA	Sales & Marketing Director at SEMIKRON	R&D experience and Leader of component development at SEMIKRON	R&D Experience in Power Device Technology development at International Rectifier	, Production, R&D and Line Manager experience at ITI / IXYS / ABB

12/02/18

Key customers China

致力于清洁高效

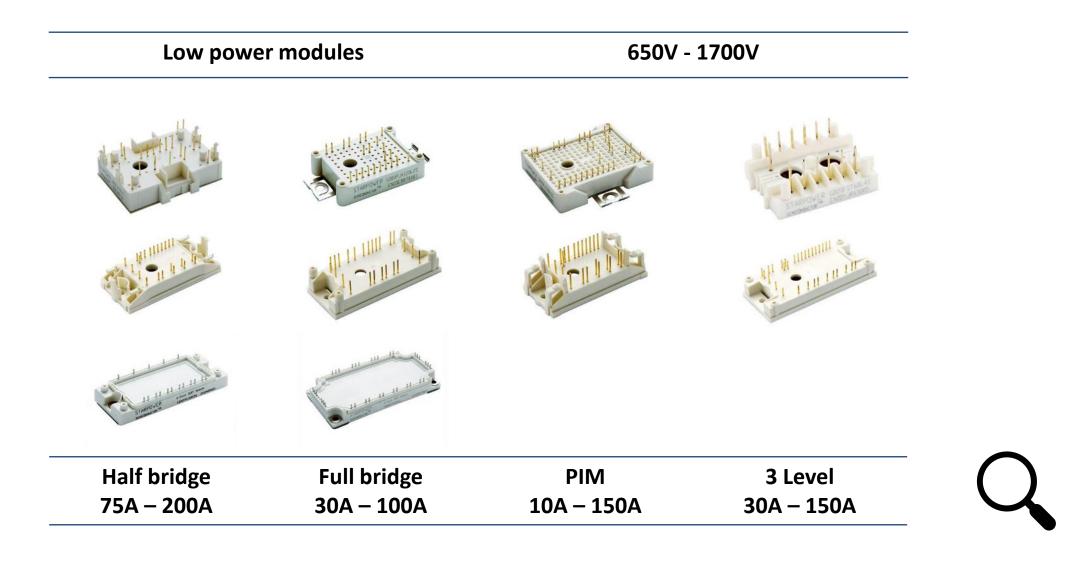
12/02/18

©StarPower Semiconductor Ltd.

StarPower position in Chinese Automotive Market

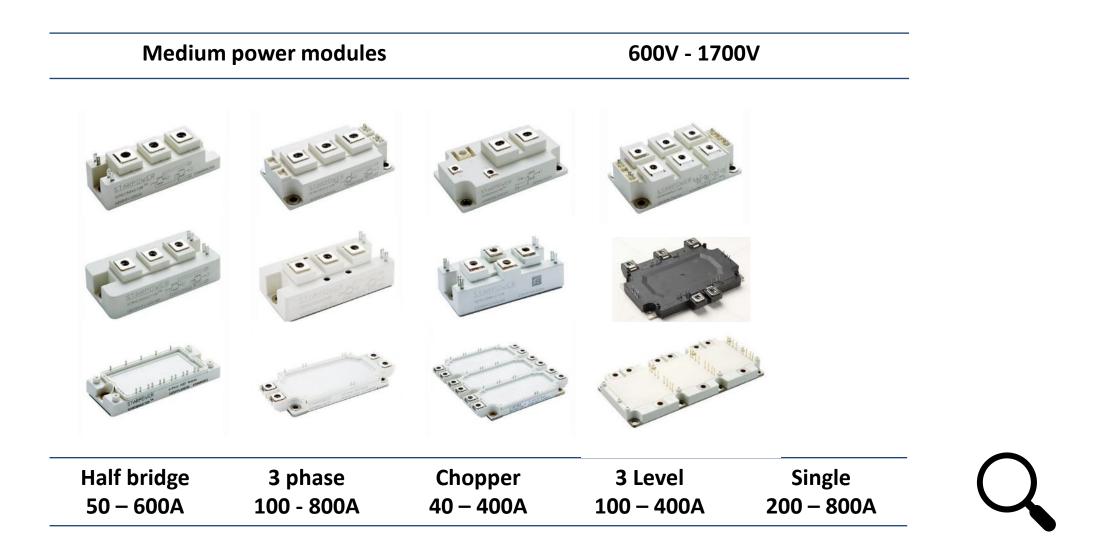
Main Customers		End Customers
Shanghai EDRIVE CO. Ltd		
Shenzhen Inovance Technology Co.	Inovance	YUTONG
Shanghai DAJUN Technologies INC	大郡控制 DAJUN TECH	・
HUAYU Automotive Systems Co. Ltd	华域汽车	
Jee Automation Equipment Co. Ltd		江淮涅车
Shenzhen V&T Technologies Co. Ltd	V&T 蓝海华腾	

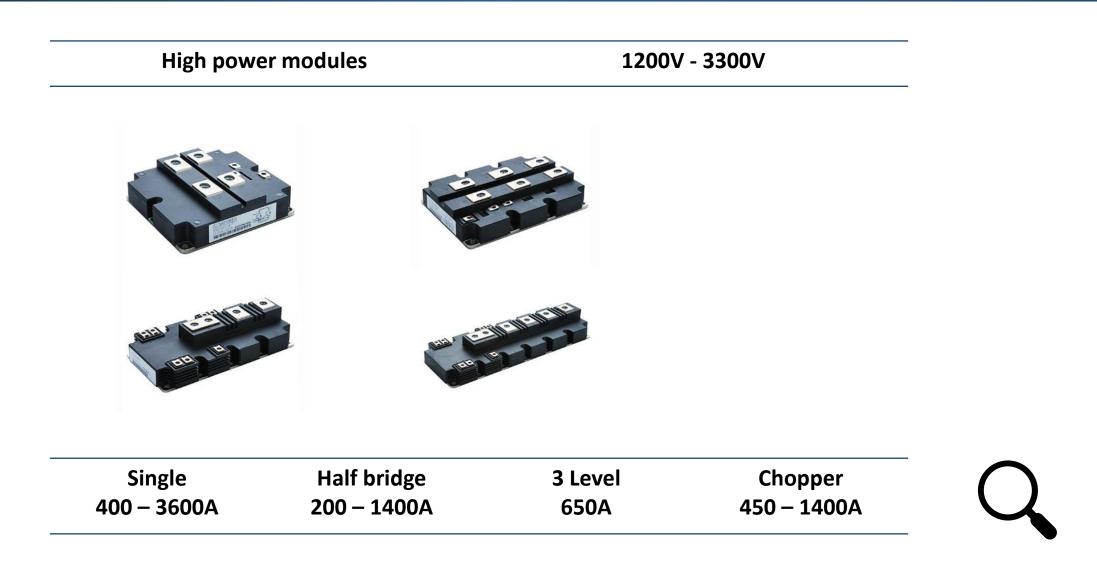
Key Customers StarPower Europe



12/02/18

©StarPower Semiconductor Ltd.


IGBT Modules – Standard Range


IGBT Modules – Standard Range

IGBT Modules – Standard Range

Excellence in Module Packaging

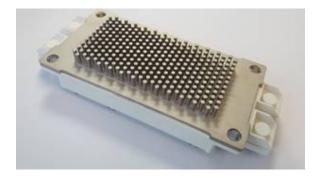
Chip - Sintering

- Increase module reliability by up to factor 3
- Allows for higher T_i
- Improves thermal resistance

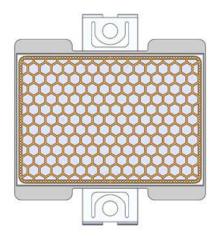
Pressfit

- Low thermal and electrical contact resistance
- Gas-tight contact and high contact force
- Increased system reliability, especially in harsh environment


PINFIN

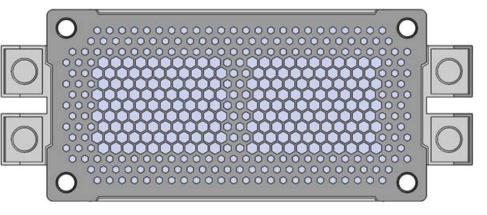

12/02/18

- The PINFIN heat sink geometry to provide increased surface area for heat transfer, low thermal resistance from base to fins
- Lower thermal resistance -> lower operating temperature or high power densities



©StarPower Semiconductor Ltd.

Excellence in Module Packaging


TIM

- Soft material at all temperatures
- Optimum for modules without baseplates
- Higher output power, higher lifetime

High Temperature Silicone Gel

- Tjop = 175°C possible
- High temperature silicone gel passes, in combination with special Chip passivation, the HVH3TRB Test

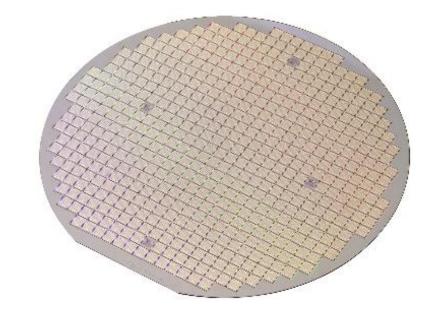
- Solid material at low temperatures
- High performance thermal paste with 30% improved Rthjs

Chip Strategy IGBTs and Diodes

StarPower Chip design

Chips designed internally and produced in Chinese foundry

NPT IGBT (1200V / 1700V)


- In production more than 3 years
- Widely used in inverter / UPS / Welding application
- 20% of current IGBT modules are sold with StarPower IGBT's

Trench with Field Stop IGBT (650V / 1200V / 1700V)

- 1200V in Series production since Dec 2015
- 650V in Series production 2017
- Widely used in inverter / UPS / Welding application / Automotive application

External Suppliers

Work with strong, reliable and reputable partners: Infineon, ABB, Ixys, Vishay

IGBT Platform Status and Plans

1200V NPT-IGBT

In Volume production > 5 years

1200V FS-IGBT

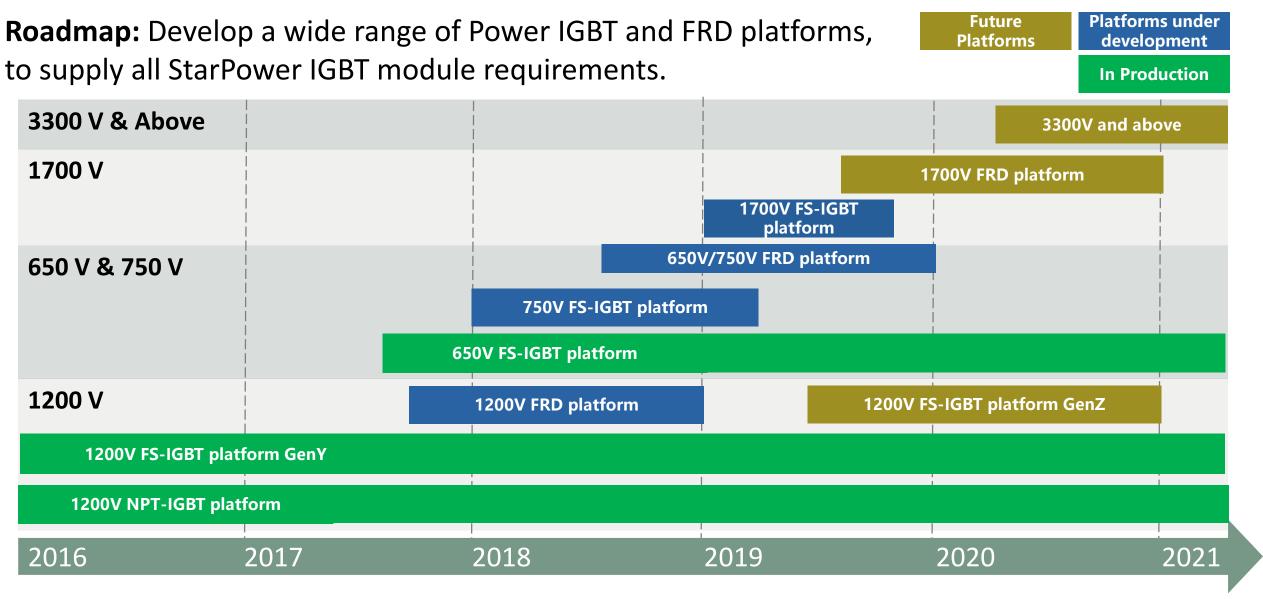
In Volume production > 2 years

650V FS-IGBT

In Volume production since Q4 2017

750V / FS-IGBT

In development, Samples available Q3 2018 Qualification Q4 2018


1700V FS-IGBT

In development, 1st 75A sample available Q4 2018 Other die sizes sample available Q1 2019 Qualification Q2 2019

12/02/18

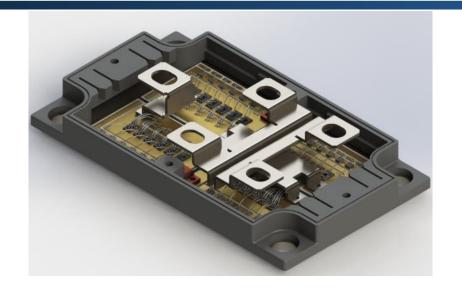
Trench FS-IGBT & FRD Roadmap

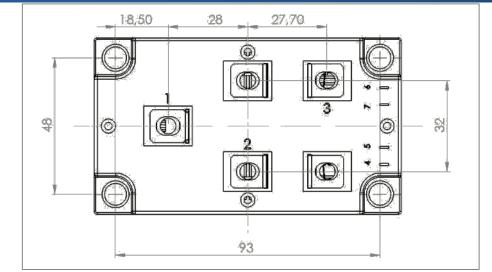
- Wide range of standard packages available for SiC implementation
- Optimized SiC package (Starpower development) for SiC (ultra-low inductance, optimized thermal design)
- Flexible die sourcing depending on customer requirements

 \rightarrow Key partners: USCi, Rohm, Cree

- In-house package design capability with long experience in module design and optimization
- In-house process capabilities required for SiC processing (i.e. Die Sintering)
- \rightarrow Focus currently on custom projects with launch of standard modules planned in future

MD120HFR120C2S	MD300HFR120C2S	MD250HFR170C2S
V _{DSS} = 1200V	V _{DSS} = 1200V	V _{DSS} = 1700V
I _D @ T _C 100°C = 120A	I _D @ T _C 100°C = 300A	I _D @ T _C 100°C = 250A
T _{jop} = -40°C / +150°C	T _{jop} = -40°C / +150°C	T _{jop} = -40°C / +150°C
R _{DS(on)} @ Τ _j 25°C = 10mΩ	R _{DS(on)} @ T _j 25°C = 5mΩ	R _{DS(on)} @ T _j 25°C = 8.3mΩ


Package optimised for requirements of SiC chips


- \rightarrow Optimized thermal management with T_{imax} at 175°C
- \rightarrow Sintered chips for significantly improved reliability compared with soldering

(Competitor parts in same housing use soldered chips. **Reliability increases** by about **factor 3** due to **sintering**.)

StarPower SiC Module

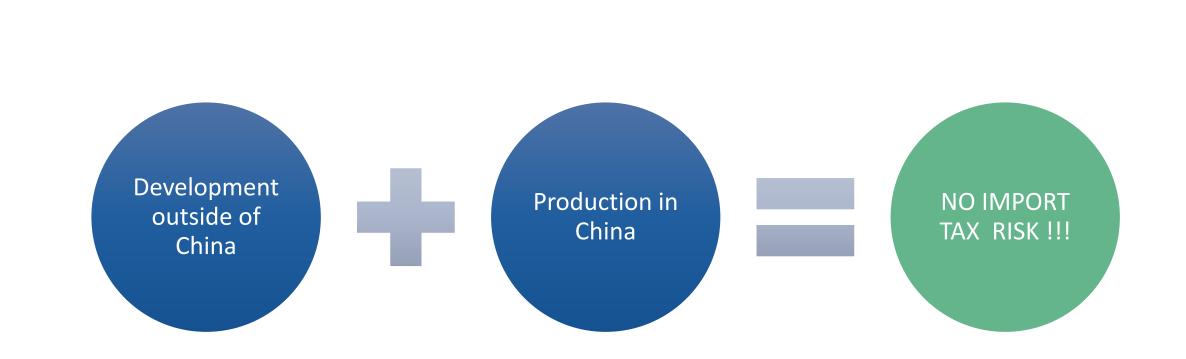
Package: B → Case heigth = 17mm

MD300HFR120B3S	MD350HFR120B3S	MD400HFR120B3S
V _{DSS} = 1200V	V _{DSS} = 1200V	V _{DSS} = 1200V
I _D @ T _C 100°C = 300A	I _D @ T _C 100°C = 350A	I _D @ T _C 100°C = 400A
T _{jop} = -40°C / +175°C	T _{jop} = -40°C / +175°C	T _{jop} = -40°C / +175°C
R _{DS(on)} @ T _j 25°C = 5mΩ	R _{DS(on)} @ T _j 25°C = 4mΩ	R _{DS(on)} @ T _j 25°C = 3.3mΩ

Package optimised for requirements of SiC chips

- → Ultra low package inductance of 8nH
- ightarrow Optimized thermal management with
 - T_{jmax} at 200°C
- → Sintered chips for significantly improved reliability compared with soldering

Reliability test equipment



©StarPower Semiconductor Ltd.

Qualification tests

Test	Parameter set	Standard
HTS	T _a =140±5°C (T _{jmax} = 175°C) 1000h	
LTS	T _a =-40°C 168h	acc.3K3 EN60068-2-1
HTRB	T _j =150±2°C (T _{jmax} = 175°C) V _{ce} =0.8*V _{ce} (max), 1000h	EN60747-9 (chip qualification)
HTGS	T _j =150±2°C (T _{jmax} = 175°C) V _{ge} =20V, 1000h	EN60747-9 (chip qualification)
H3TRB	T=85±2°C H: 85±5%, V _{ce} =80%V _{ce(max)} ,168h _(Standard) (1000h) _{internal}	acc.to 60068-2-67 EN60749-5
TWT	-40±5°C 125±5°C 200 cycles, each 45min	EN60747-9
Vibration	5g, 10Hz-500Hz, 26sweeps, 3h	EN60068-2-6
Shock	30g, 6 directions, 100x per direction	EN60068-2-29Eb
PC	ΔT=110°C @ T _j =150°C	EN60749-34

starpower

Dream is driven by quality

Thank you