

Voltage transducer DVM 2000-UI

 $V_{PN} = 2000 \text{ V}$

Unipolar power supply voltage - Current output 4-20 mA

For the electronic measurement of voltage: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

Features

- Unipolar and insulated measurement up to 2000 V
- 4-20 mA output
- Unipolar power supply
- Input and output connections with M5 studs.

Advantages

- Low consumption and low losses
- Compact design
- Good behavior under common mode variations
- Excellent accuracy (offset, sensitivity, linearity)
- Good response time
- Low temperature drift
- High immunity to external interferences.

Applications

- Substations
- Trackside.

Standards

- EN 50155: 2007
- IEC 61010-1: 2010
- IEC 61800-1: 1997
- IEC 61800-2: 2015
- IEC 61800-3: 2004
- IEC 61800-5-1: 2007
- IEC 62109-1: 2010
- EN 50124-1: 2001
- EN 50121-3-2: 2006.

Application Domain

- Traction (fixed and onboard)
- Industrial.

Absolute maximum ratings

Parameter	Symbol	Unit	Value
Maximum supply voltage ($V_p = 0 \text{ V}, 0.1 \text{ s}$)	U_{C}	V	34
Maximum supply voltage (working) (−40 85 °C)	$U_{\mathtt{C}}$	V	26.4

Absolute maximum ratings apply at 25 °C unless otherwise noted.

Stresses above these ratings may cause permanent damage. Exposure to absolute maximum ratings for extended periods may degrade reliability. Exposure to absolute maximum ratings for extended periods may degrade reliability.

Insulation coordination

Parameter	Symbol	Unit	Value	Comment
RMS voltage for AC insulation test, 50 Hz, 1 min	U_{d}	kV	12	100 % tested in production
Impulse withstand voltage 1.2/50 μs	\hat{U}_{W}	kV	30	
Partial discharge extinction RMS voltage @ 10 pC	U_{e}	V	5000	
Insulation resistance	R_{INS}	ΜΩ	200	measured at 500 V DC
Clearance (pri sec.)	d _{CI}	mm	See dimensions	Shortest distance through air
Creepage distance (pri sec.)	d_{Cp}	mm	drawing on page 8	Shortest path along device body
Case material	-	-	V0 according to UL 94	
Comparative tracking index	CTI	V	600	
Maximum DC common mode voltage	$\begin{array}{c} V_{\rm HV+} + V_{\rm HV-} \\ {\rm and} \; V_{\rm HV+} - V_{\rm HV-} \end{array}$	kV	≤ 6.3 ≤ V _{PM}	

Environmental and mechanical characteristics

Parameter	Symbol	Unit	Min	Тур	Max
Ambient operating temperature	T_{A}	°C	-40		85
Ambient storage temperature	T_{S}	°C	-50		90
Mass	m	g		375	

Electrical data

At $T_{\rm A}$ = 25 °C, $U_{\rm C}$ = 24 V, $R_{\rm M}$ = 100 Ω , unless otherwise noted. Lines with a * in the conditions column apply over the -40 ... 85 °C ambient temperature range.

Parameter	Symbol	Unit	Min	Тур	Max		Conditions
Primary nominal RMS voltage	V_{PN}	V	0		2000	*	
Measuring resistance	R_{M}	Ω	0			*	see derating on figure 1
Secondary nominal RMS current	I_{SN}	mA	4		20	*	
Secondary current	I_{S}	mA	3		21	*	see figure 2
Supply voltage	U_{C}	V	14.25	24	26.4	*	
Rise time of $U_{\rm C}$ (10-90 %)	t_{rise}	ms		İ	100		
Current consumption $(U_C = \pm 24 \text{ V at } V_P = 0 \text{ V})$	$I_{\mathtt{C}}$	mA		55			
Offset current	I_{O}	μA	3950	4000	4050		100 % tested in production
Temperature variation of $I_{\rm O}$	I_{OT}	μA	-100 -120		100 120	*	−25 85 °C −40 85 °C
Sensitivity	G	μA/V		10			20 mA for primary 2000 V
Sensitivity error	$\varepsilon_{_{G}}$	%	-0.3		0.3		
Thermal drift of sensitivity	$\varepsilon_{_{GT}}$	%	-0.5		0.5	*	
Linearity error	$arepsilon_{L}$	% of $V_{\rm PM}$	-0.5		0.5		
Overall accuracy	X_{G}	% of $V_{\rm PN}$	-0.5 -1		0.5 1	*	25 °C; 100 % tested in production -40 85 °C
Output RMS current noise	I_{no}	μA		16.5			10 Hz to 100 kHz
Reaction time @ 10 % of $V_{\rm PN}$	$t_{\rm ra}$	μs		30			
Response time @ 90 % of $V_{\rm PN}$	t_{r}	μs		50	60		0 to 2000 V step, 6 kV/μs
Frequency bandwidth	BW	kHz		13 8			−3 dB −1 dB
Start-up time	$t_{ m start}$	ms		190	250	*	
Resistance of primary (winding)	R_{P}	ΜΩ		25.1		*	
Total primary power loss @ V_{PN}	P_{P}	W		0.16		*	

Definition of typical, minimum and maximum values

Minimum and maximum values for specified limiting and safety conditions have to be understood as such as well as values shown in "typical" graphs.

On the other hand, measured values are part of a statistical distribution that can be specified by an interval with upper and lower limits and a probability for measured values to lie within this interval.

Unless otherwise stated (e.g. "100 % tested"), the LEM definition for such intervals designated with "min" and "max" is that the probability for values of samples to lie in this interval is 99.73 %.

For a normal (Gaussian) distribution, this corresponds to an interval between -3 sigma and +3 sigma. If "typical" values are not obviously mean or average values, those values are defined to delimit intervals with a probability of 68.27 %, corresponding to an interval between -sigma and +sigma for a normal distribution.

Typical, maximal and minimal values are determined during the initial characterization of a product.

Typical performance characteristics

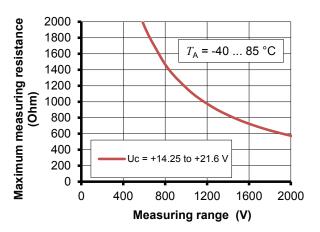


Figure 1: Maximum measuring resistance

$$R_{\rm M\,max} = {\rm min}\, \left(\frac{100\times (U_{\rm C\,min}-1.4)\times 10^3}{V_{\rm P}} - 25; \frac{1200\times 10^3}{V_{\rm P}} - 25\right) \Omega$$

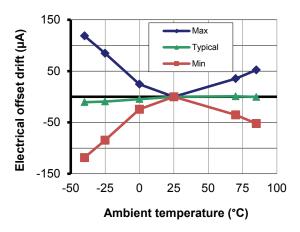


Figure 3: Electrical offset thermal drift

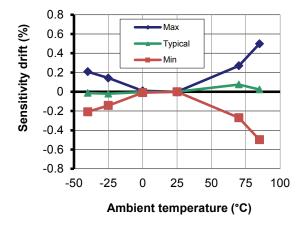


Figure 5: Sensitivity thermal drift

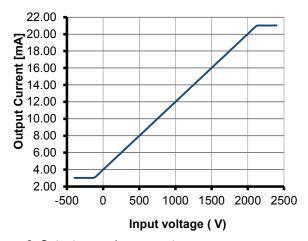


Figure 2: Output secondary current

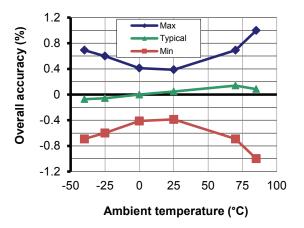
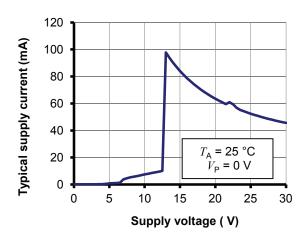



Figure 4: Overall accuracy in temperature

Typical performance characteristics

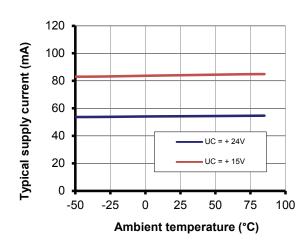
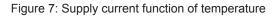
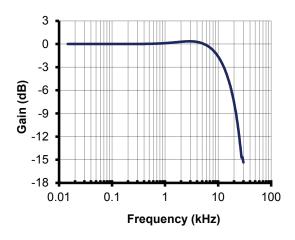




Figure 6:Supply current function of supply voltage

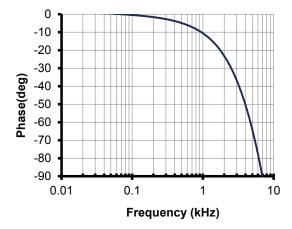
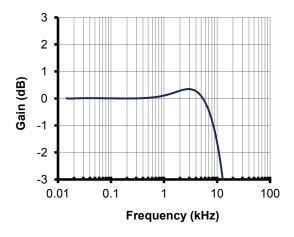



Figure 8: Typical frequency and phase response

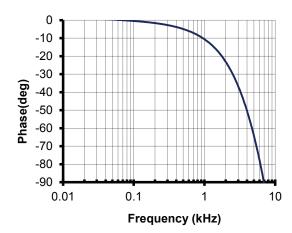


Figure 9: Typical frequency and phase response (detail)

Typical performance characteristics continued

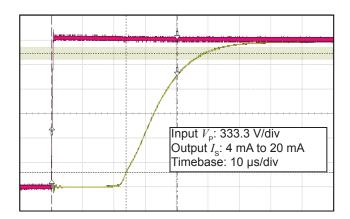


Figure 10: Typical step response (0 to $V_{\rm PN}$)

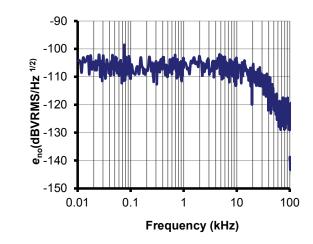


Figure 12: Typical noise voltage spectral density $e_{\rm no}$ with $R_{\rm M}$ = 50 Ω

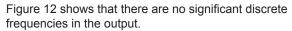


Figure 13 confirms the absence of steps in the total output current noise that would indicate discrete frequencies. To calculate the noise in a frequency band f1 to f2, the formula is:

$$I_{\text{no}}(f1 = f2) = \sqrt{I_{\text{no}}(f2)^2 - I_{\text{no}}(f1)^2}$$

with $I_{no}(f)$ read from figure 12 (typical, RMS value).

Example:

What is the noise from 100 to 1 kHz? Figure 13 gives $I_{no}(100 \text{ Hz}) = 1.0 \mu\text{A}$ and $I_{no}(1 \text{ kHz}) = 3.13 \mu\text{A}$.

The output RMS current noise is therefore.

$$\sqrt{(3.13 \times 10^{-6})^2 - (1.0 \times 10^{-6})^2} = 2.97 \,\mu\text{A}$$

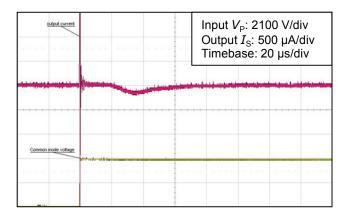


Figure 11: Detail of typical common mode perturbation (4200 V step with 6 kV/ μ s, $R_{\rm M}$ = 100 Ω)

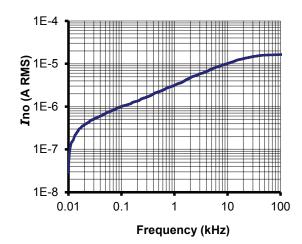


Figure 13: Typical total output RMS noise current with $R_{\rm M}$ = 50 Ω

Performance parameters definition

The schematic used to measure all electrical parameters are:

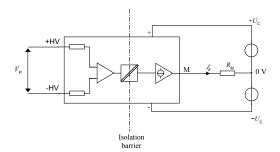


Figure 14: standard characterization schematics for current output transducers ($R_{\rm M} = 50 \Omega$ unless otherwise

Transducer simplified model

The static model of the transducer at temperature $T_{\rm A}$ is:

$$\begin{split} &I_{\rm S} = G \cdot V_{\rm P} + \varepsilon \\ &\text{In which} \\ &\varepsilon = I_{\rm OE} + I_{\rm OT}(T_{\rm A}) + \varepsilon_{\rm G} \cdot G \cdot V_{\rm P} + \varepsilon_{\rm GT}(T_{\rm A}) \cdot G \cdot V_{\rm P} + \varepsilon_{\rm L} \cdot G \cdot V_{\rm PM} \end{split}$$

:secondary current (A) G

:sensitivity of the transducer (µA/V)

:primary voltage (V)

:primary voltage, measuring range (V) :ambient operating temperature (°C)

:electrical offset current (A) :temperature variation of $I_{\rm O}$ at temperature $T_{A}(A)$

:sensitivity error at 25 °C $\varepsilon_{\text{G}T}(T_{\text{A}})$:thermal drift of sensitivity at

temperature $T_{\rm A}$:linearity error

 $\varepsilon_{\rm L} \\ {\rm is}$ This the absolute maximum error. all errors are independent, a more realistic way calculate the error would be to use the following formula:

$$\varepsilon = \sqrt{\sum_{i=1}^{N} \varepsilon_{i}^{2}}$$

Sensitivity and linearity

To measure sensitivity and linearity, the primary voltage (DC) is cycled from 0 to $V_{\rm PM}$, and back to 0 (equally spaced $V_{\rm PM}/10$ steps).

The sensitivity G is defined as the slope of the linear regression line for a cycle between 0 to $V_{\rm PM}$.

The linearity error $\varepsilon_{\rm L}$ is the maximum positive or negative difference between the measured points and the linear regression line, expressed in % of the maximum measured value.

Electrical offset

The electrical offset current $I_{\text{O E}}$ is the residual output current when the input voltage is zero.

The temperature variation $I_{\text{O}\ T}$ of the electrical offset current I_{OF} is the variation of the electrical offset from 25 °C to the considered temperature.

Overall accuracy

The overall accuracy $X_{\rm G}$ is the error at $\pm V_{\rm PN}$, relative to the rated

It includes all errors mentioned above.

Response and reaction times

The response time t_r and the reaction time t_{ra} are shown in the next figure.

Both depend on the primary voltage dv/dt. They are measured at nominal voltage.

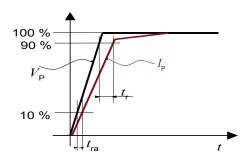
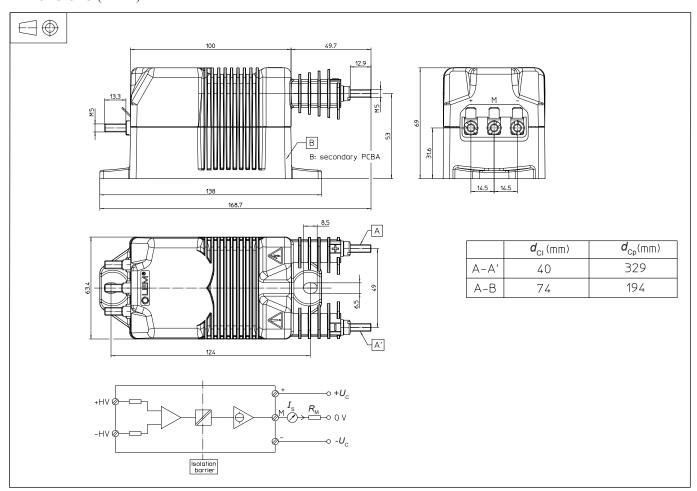



Figure 15: response time t_r and reaction time t_{ra}

Dimensions (in mm)

Mechanical characteristics

General tolerance ± 1 mm

Transducer fastening
 2 holes Ø 6.5 mm

2 M6 steel screws

Recommended fastening torque 5 N·m

Connection of primary
 2 M5 threaded studs

Recommended fastening torque $\ 2.2 \ N\cdot m$

Connection of secondary
 3 M5 threaded studs

Recommended fastening torque 2.2 N·m

Remarks

- I_s is positive when a positive voltage is applied on +HV.
- The transducer is directly connected to the primary voltage.
- The primary cables have to be routed together all the way.
- The secondary cables also have to be routed together all the way.
- Installation of the transducer is to be done without primary or secondary voltage present
- Installation of the transducer must be done unless otherwise specified on the datasheet, according to LEM Transducer Generic Mounting Rules. Please refer to LEM document N°ANE120504 available on our Web site: Products/Product Documentation.

 This is a standard model. For different versions (supply voltages, sensitivity, unidirectional measurements...), please contact us

Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary connections, power supply). Ignoring this warning can lead to injury and/ or cause serious damage. This transducer is a build-in device, whose conducting parts must be inaccessible after installation. A protective housing or additional shield could be used. Main supply must be able to be disconnected.